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Motivation

“Physical computing media are asymmetric. 
Their symmetry is broken  by  irregularities,  physical  boundaries,  external connections  and  so  on.    
Such  peculiarities,  however,  are highly variable and extraneous to the fundamental nature of the media.  
Thus, they are pruned from theoretical models, such as cellular automata, and reliance on them is frowned 
upon in programming practice.
However, computation, like many other highly organized activities, is incompatible with perfect  symmetry.    
Some standard  mechanisms  must  assure  breaking  the  symmetry inherent in idealized computing 
models.”  
Leonid A. Levin, The Computer Journal Vol. 48, No. 6, 2005



Minimization and flow charts

It is not easy to explain how to understand the results of morphoCAs. It seems that there is a strong conflict between 
the millions of visualizations, sonifications and structurations managed by the approach of claviatures and the 
paradigmatic statement developed in the paper "Asymmetric Palindromes"  for morphoCAs that “What you see is not 
what it is”.
Instead of studying the multitude of the products of morphoCAs, another approach that is more focused on the 
mechanism of the production process of morphoCAs might help to uncover the deep-structural significance of 
morphogrammatic based cellular automata.

This paper offers some insights into the mechanism of production by the application of reductions (minimizations) of 
the functional interpretations of the morphoCA rules and by designing the network of the actions of the morphic 
automata by some flow charts.

There is not yet an algorthmic approach to reduce morphic CA functions accessible. But the distinction between 
reducible and non-reducible morphoCAs is well defined.

Hence, instead of considering the multi-millions of morphoCA productions, some specific flow charts of the mecha-
nism of production is presented to continue the studies of morphoCAs. With that a kind of reflection a kind of a meta-
theory of morphoCAs is introduced.

From this meta-theoretial point of view, morphoCAs might be involved into an introspection between Kaluzhnine-
Graph-Schemata of recursivity and poly-contextural memristivity.

A further approach to study the deep-structure of the meaning of morphoCAs will be sketched in a further paper by 
an analysis of their underlying poly-contextural logics. 

Contexturality vs. contextuality

The term “polycontexturality” occurs frequently in sociological studies. Often as a synonyme or replacement of 
‘polycentricity’ and linguistically, modal-logically or semiotically identified with ‘contextuality’. 

Polycontexturality refers to a trans-classical paradigm of thinkind and writing that is not compatible with established 
concepts of science, while ‘polycentricity’ and ‘contextuality’ are parts of classical logic (say, modal logic), ontology 
and semiotics.

“Polycentricity is similar to the concept of polycontexturality in logic. Polycontexturality represents a many-
system logic, in which the classical logic systems (called contextures) interplay with each other, resulting in 
a complexity that is structurally different from the sum of its components (Kaehr and Mahler 1996).” 
(Rajendra Singh, Towards Information Polycentricity Theory: Investigation of a Hospital Revenue Cycle, 
2011)

A similar approach, chosen out of the ‘polycentricity or centextualist movement’, is proposed e.g. by Lars Qvortrup:

“The implicit idea behind the first three theses is that we are on our way into a society, which is radically 
different from the so-called modern society. It has been described as “functionally differentiated” (Luhmann 
1997), as “polycontextural” (Gu ̈nther 1979) or as “hypercomplex” (Qvortrup 1998), emphasising that it does 
not offer one single point of observation, but a number of mutually competing observation points with each 
their own social context.”
Lars Qvortrup, THE AESTHETICS OF INTERFERENCE: From anthropocentrism to polycentrism and the 
reflections of digital art

http://www.hotelproforma.dk/Userfiles/File/artikler/lq.pdf

It might provoke some progress if the distinctions proposed in this paper would be applied to systems theory of intra-, 
inter- and trans-contexturally mediated complex dis-contextural constellations and dynamics. 

http : // memristors.memristics.comMorphospheresAsymmetric %20 Palindromes.html

http : // scholarworks.gsu.edu /cgi / viewcontent.cgi?article = 1003 & context = ceprin_diss

More entertainment with intra-, inter- and trans-disciplinarity of inter-, poly-, trans- and dis-contexturality at: “Modular 
Bolognese, Paradoxes of postmodern education”  in: Short Studies 2008. Adventures in Diamond Strategies of 
Change(s) 

http : // works.bepress.com/cgi / viewcontent.cgi?article = 1007 & context = thinkartlab

Three kinds of morphoCA diagrams
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Three kinds of morphoCA diagrams

Three kinds of morphoCA diagrams have to be distinguished:

1. Mono-contextural diagrams (intra)

    

   intra

   

This ‘technical’ diagram has a meta-mathematical representation in the graph schemata calculus for recursion. With 
this connection, all the meta-theoretical results about computability are ready to be applied.

Graph scheme for mathematical recursion

( In )

(D ) ↖
↙ ↘

(Q ' ) (Q )

E(n, a) = (o, n, a),
Γ(i, n, ω) ≡ n= i

A (i, n, ω ')
δ (i, n, ω) = (i ', n, ω ')
m' = m+1 , m∈ 2

R. Peters, Dialectica 4748, p. 375, 1958

The first kind is covered by the classical diagrams. These diagrams hold for classical ECAs as much as for mono-
contextural morphoCAs of different topological complexity. Morphogrammatically, they are supported by the 
‘classical’ morphograms of complexity 2.

2. Poly - contextural diagrams as interaction (inter, trans)

The second kind is based on a distribution of the diagram of at least 3 loci. This distribution is basic for the interac-
tions between otherwise autonomous automata. The internal structure of the memory/logic unit of the single 
automata is intrinsically changed toward a chiastic, i.e. memristive behavior of internal and external events.
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The second kind is based on a distribution of the diagram of at least 3 loci. This distribution is basic for the interac-
tions between otherwise autonomous automata. The internal structure of the memory/logic unit of the single 
automata is intrinsically changed toward a chiastic, i.e. memristive behavior of internal and external events.

The interactional activity of the second kind of diagrams is supported by the morphograms of complexity 3. 
In this field of interactional activity of complexity 3, two different modi might be distinguished:
• inter-actional with morphograms mg[5], mg[10] and mg[14], and head[{1,2,3}] -> i, i=1,2,3
• trans-contextural mg[11], mg[12] and mg[13] with head [{1,2}] -> 3.

3. Poly - contextural diagrams as mediation 

The third kind is based on the second kind but is involving the whole structural complexion of the distributed morpho-
CAs. Only with this configuration the full graphematic character of morphoCAs enters the trans-classic game of 
computation, interaction, reflection and mediation.

Mediative actions are supported by morphograms of the minimal complexity 4, represented by the morphogram 
mg[15] with head[{1,2,3}]->4.

 Poly - contextural basic component

    

   intra

trans

inter
intra

Exam ples

Functions

intra : 0, 0, 0 → 0 : sys1, 1, 1 → sys1, 1, 1
trans : 0, 0, 1 → 2 : sys1, 1, 1 → sys3 || sys1 || sys3
inter : 1, 2, 1 → 0 : sys2, 1, 2 → sys1 || sys3 || sys1
med : 1, 0, 2 → 3 : sys1, 2, 3 → sys5 || sys4 || sys6

Action schemes
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intra iteration scheme

Ck-1
t , Ck

t , Ck+1
t

Ck
t+1 ≡ Ck

t

Ck-1
t , Ck

t , Ck+1
t

Ck
t+1 ≡ Ck

t

inter / trans-action scheme

Ci,k-1
t , Ci,k

t , Ci,k+1
t  || Cj,k-1

t , Cj,k
t , Cj,k+1

t 

Ci,k
t+1 ⟶ Ci,k

t+1 ≡ Cj,k
t+1

Cj,k-1
t , Cj,k

t , Cj,k+1
t 

Morphograms

intra

R1 R2 R3 R4

■ ■ ■
- ■ -

■ ■ □
- ■ -

■ □ ■
- ■ -

■ □ □
- ■ -

R6 R7 R8 R9

■ ■ ■
- □ -

■ ■ □
- □ -

■ □ ■
- □ -

■ □ □
- □ -

trans

R11 R12 R13

■ ■ □
- ■ -

■ □ ■
- ■ -

■ □ □
- ■ -

inter

R5 R10 R14

■ □ ■
- ■ -

■ □ ■
- □ -

■ □ ■
- ■ -

 

mediation

R15

■ □ ■
- ■ -

The compound morphogram ruleDM[{1, 3, 4, 11, 15}] inscribes the deep-structure of the mediation of intra- and inter-
contextural actions.

■ ■ ■
- ■ -

■ □ ■
- ■ -

■ □ □
- ■ -

■ ■ □
- ■ -

■ □ ■
- ■ -

Poly-contextural logic

Quite obviously, intra-contextural morphograms are representing the deep-structure of junctional mono- and poly-
contextural operators.

As a first remark, inter- and trans-contextural morphograms are representing the deep-structures of transjunctional 
poly-contextural operators.

Morphogram mg[15] represents the full differentiations of the interplay of inter- and trans-contextural poly-contextural 
operators.

The proof-theoretical metaphor of polycontextural interplays is not anymore just a ‘tree’ but a ‘forrest of colored trees’.
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Example: ternary 3-contextural transjunctions of ruleDCM[{1, 2, 12, 13, 5}]

{0, 0, 0} → 0, {0, 0, 1} → 0 : dis - junctions in syst1,
{0, 0, 2} → 0 : junction in syst3, "0⋀(0⋁2)≡ 0",
{2, 2, 0} → 2 : junction in syst3, "2⋀(2⋁0)≡ 2",

{0, 1, 0} → 2, {1, 0, 0} → 2 : trans - junctions from syst1 to sys2 || sys3,

{1, 2, 1} → 0 : trans - junctions from syst2 to sys1 || sys3

{0, 2, 2} → 1, {2, 0, 0} → 1 : trans - junctions from syst3 to sys1 || sys2,

{0, 1, 2} → 0, {2, 1, 0} → 2 : trans - junctions from syst1, 3, 2 to sys1 || sys3

1. Mono-contextural diagrams: ECA and morphoCA(m,2,n)

Diagram of the ECA scheme

K. Salman’s paper “Elementary Cellular Automata (ECA) Research platform” gives an elaborated definition and 
explanation of the concept of ECAs.
For the purpose of an introduction of morphoCAs it suffice to connect to some of its terms and constructions.

“For ease of illustration we let the CA evolve according to one uniform neighborhood transition function and 
fixed radius which is a local function (rule) =0 : >2 r+1⟶ >where the CA evolves after a certain number of 
time steps T.
In this case we have a total of ?2 r+1distinct rules. It follows that a 1 - D CA is a linear lattice or register of @∈ 
ℕ memory cells. Each cell is represented by Ckt , where B = [1: @], @∈ ℕ and C = [1:  D], D∈ ℤ that 
describes the content of memory location at evolution time step t..”  (K. Salman)

                              Figure 5, Detailed Structure of a typical Cellular Automaton Cell for rule 30.

http : // www.cyberjournals.com/Papers/Jun2013/02. pdf

Diagram of the CA rule in respect of input and output cells in time t to t+1 

move right
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http : // www.slideshare.net / ijcsit / 5413 ijcsit03

Description of the mechanism of the CA calculation

The object Dk of Ck
t+1 of Fig. 5 is a result of the calculation of the logical unit U, i.e. Transition Rule Logic, in relation 

to its inputs Ck+1
t  and Ck-1

t , but it is also at the same time the initial value, Qk, in the Memory Cell, of a new calcula-
tion of a next step of the CA. 

This new calculation might happen intra-contexturally as a mapping from Qk as Qi to the logic unit Ui or trans-
contexturally as a mapping from Qk as Qi to the new object Dk of Dk

i+1 in CA2.1where it becomes the new value of 
Qk

i+1for a calculation in CA2.2.

The presumption of the classical model of ECAs is certainly that all components are from the same contexture, and 
having the same clock.

Mono-contextural CAs are homogeneous structures.

Classical Cellular Automata. Homogeneous Structures
 By V. Z. Aladjev

intra iteration scheme

[Ck-1t , Ckt, Ck+1t

Ckt+1 ≡ Ckt

Ck-1t , Ckt, Ck+1t

Ckt+1 ≡ Ckt

inter / trans interaction scheme

Ci,k-1t , Ci,kt , Ci,k+1t ] || Cj,k-1t , Cj,kt , Cj,k+1t 

Ci,kt+1 ⟺intertrans Cj,kt+1 ≡ Cj,kt

intra

Cj,k-1t , Cj,kt , Cj,k+1
t 

inter / trans interaction network scheme

Ci,k-1t , Ci,kt , Ci,k+1t ] || Cj,k-1t , Cj,kt , Cj,k+1t  || [Ch,k-1t , Ch,kt , Ch,k+1t ]

⟺ Ci,kt+1 ≡ Ci,kt ⟺intertrans Cj,k
t+1 ≡ Cj,kt ⟺intertrans Ch,kt+1 ≡ Ch,kt ⟺

intra

Ci,k-1t , Ci,kt ,

Ci,k+1
t  || Cj,k-1t , Cj,kt , Cj,k+1

t  || Ch,k-1t , Ch,kt , Ch,k+1
t 

Diagram of the sub-rule definition of ECAs

A sub-rule implementation of the ECA rules might augment its computational efficiency and reduce numeric complex-
ity for programmable hybrid ECA compositions.
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As it is well known, CAs are understood as parallel computing concepts and devices.

There is no doubt that the sketched sub-rule appoach can be concretized and implemented as a ‘hybrid’ ECA on a 
hardware board like Spartan-6 FPGA Connectivity Kit or similar.
 (http://www.xilinx.com/products/boards-and-kits.html)

A further step in augmenting the granularity of CAs might be achieved with the sub-rule approach for ECA rules. 
Each ECA rule is defined in a sub-rule oriented approach as a composition of sub-rules. Thus all compatible sub-
rules can be applied in parallel to realize a single ECA rule.

Also the sub-rule approach is defining the ECA rules is not yet showing the flow chart of the interactions of the sub-
rules to build the ECA rule.

ECA-rule = [eca1, eca2, ..., eca8]

Example: ECA rule 210

Ck-1t , Ckt, Ck+1t

Ckt+1
: intra

ruleECA[{6, 7, 3, 9, 10, 12, 13, 15}]

{{0, 0, 0} → 1,
{0, 0, 1} → 1,
{0, 1, 0} → 0,
{0, 1, 1} → 1,
{1, 0, 0} → 0,
{1, 0, 1} → 0,
{1, 1, 0} → 1,
{1, 1, 1} → 0}

FromDigits[{1, 1, 0, 1, 0, 0, 1, 0}, 2]

210

Hence the ECA rule 210 is represented by the tuple (6,7,3,9,10,12,13,15) of ECA sub-rules.

Flow chart of the parallel realization of the 8 sub - rules of an ECA. 

“If in a CA the same rule applies to all cells, then the CA is called a uniform CA; otherwise the CA is called a hybrid 
CA (Fig. 1).”
Theory and Applications of Cellular Automata in Cryptography
S.Nandi, B.K.Kar and P.Pal Chaudhuri
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ECA sub-rule manipulators

The method of sub-rules for ECAs is an abstraction and parametrization of the components of the rule schemes that 
allows a micro-anlysis of the ECAs. The ECA sub-rule manipulator manages all ECA rules of a 1D ECA. The sub-
rule manipulators enables a micro-analysis of the behavior of all 28 ECA rules.  

Each 1-D ECA rule number has a sub-rule number representation. There are just 8 disjunct pairs of sub-rules to 
define a 1D ECA rule.

The results are visualized below. The combination of the 8 sub-rules covers all the 256 well known ECA rules.

k 1 6

l 2 7

m 3 8

n 4 9

o 5 10

p 11 12

q 13 14

r 15 16

steps 44
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Mono-contextural ruleDCKF(5,2,3)

a 1111 1112

b 1121 1122

c 1211 1212

d 2111 2112

e 1221 1222

f 2121 2122

g 2212 2211

h 2221 2222

steps 22

mesh

Reduction (trivial)

ruleDCKF[{1111, 1122, 1211, 2112, 1221, 2121, 2211, 2222}]

intra
{1, 1, 1, 1} → 1, {0, 0, 0, 0} → 0, : Sys1
{1, 1, 1, 0} → 0, {0, 0, 0, 1} → 1,
{1, 1, 0, 1} → 1, {0, 0, 1, 0} → 0,
{1, 0, 1, 1} → 0, {0, 1, 0, 0} → 1,
{1, 1, 0, 0} → 1, {0, 0, 1, 1} → 0,
{1, 0, 1, 0} → 1, {0, 1, 0, 1} → 0,
{1, 0, 0, 1} → 1, {0, 1, 1, 0} → 0,
{1, 0, 0, 0} → 0, {0, 1, 1, 1} → 1

Random
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Scheme: (r1, r2, r3, r4) ⟹ r5, ri = {0, 1}

ruleDCKF r4r1r2

r3
r5

2. Poly-contextural diagrams with interactions

General approach

Internal structure of the memory unit of the second kind

Following for example K. Salman’s classical modelling approach in “Elementary Cellular Automata (ECA) Research 
platform“  a more explicit modelling of the mechanism of morphoCAs might be achieved.

A first crucial difference to the classical concept is the fact that the memory unit is not just passively receiving (D) and 
sending data (Q) but is also actively deciding to which system of its computational environment they belong and if the 
data remain in its domain or not. If not, the activity of the memory unit is deciding where that data belong and sends it 
to the evoked computational unit of the complexion. 

In terms of actors, the memory unit is receiving, sending and deciding about the contextures of data. Classical 
memory actions are strictly intra-contextural. This holds in the same sense for multi-processor systems too. They are 
acting strictly intra-contexturally, keeping their distributed data together.

Hence, the logic devices in the modified diagram, Fig. 5b, have two function towards its memory units: 
 1. a decision operation over the logical operations, i.e. to decide if an operation stays inside the contexture or if it 
leaves trans-contexturally the contexture for another contexture on another layer of the complex poly-layered 
morphoCA system. 
 2. the intra-contextural function of producing the junctional values for the corresponding intra-contextural memory in 
the sense of ordinary logical functions, like NAND or NOR.

The object Dk of the CA diagram receives a value from the logic unit and it delivers it to Q as Qkfor the new calcula-
tion with ck of the logical unit in time t + 1.
Secondly, Q receives the value from D as a value, not for Q1.1 in CA1 but for Q2.1of the neighbor layer CA2. This new 
value is memorized in the neighbor CA2 as the new positive value for calculation in CA2, hence it is placed in 
CA2.1and not as a genuine value of CA2 as CA2.2.

The result of the application of the rule in all 3 sub-systems is delivered with the multi-layered system as a whole, i.e. 
with morphoCA(3,3) and its rules ℛ(3,3).

Obviously, the whole automaton with its different layers has to be designed in the epistemological mode of the ‘as-
abstraction’, i.e. as “A as B is C” and not in the mode of identity with “A is A”.

The modified diagram is introducing an environment to the original mono-contextural CA diagram that implies 
the possibility of interactions. The environment of a CA system is the primary condition for a possible self-
reflection of the complex system of different and interacting CAs. 

The logic behind this construction was first introduced by Gotthard Gunther’s “Cognition and Volition” (1970) 
which gives a profound explanation of the new concept of the ‘proemial relation’. 

Modified diagram Fig. 5b
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Memristive properties of the memory/logic unit

Why and how is the behavior of the memory units of morphoCAs of second-order and memristive and not just 
defined as first-order actions of storage and transformations? The main strategy of the whole maneuver is to avoid 
‘information processing’. Interaction is prior to information exchange.

It could be said: morphoCAs without memristivity are reducible without loss to classical CAs.

 

internal :

D k
1.1 ⟹

Qk
1.1 Gk

2.2

⇵ ⇵
Qk

1.2⟹ Qk
2.1

     

external :

U1.1 → D k
1.1 ⟹

Qk
1.1 Gk

2.2 ⟶ >k
2.2 : Ck

2.1 → U2.2

⇕ ⇵
Qk

1.2 ⟹ Qk
2.1

 

The diagram below, Fig. 1, shows again the chiastic interaction between operators (M) and operands ‘σ’ distributed 
over different loci of the kenomic matrix.

“M as σ” is obviously not the so called self-reference of “M is σ”. 

Χ (M, σ) =
M1.1 ⟹σ2.1 M2.2 ⟹σ1.2

x
σ2.2 ⟹M1.2 σ1.1 ⟹M2.1

http : //
memristors.memristics.com / semi - Thue / Notes %20 on %20 semi - Thue %20 systems.html

Fig . 1 Chiasm (M, σ)

Explanation of Fig. 1

"The wording here is not only
" types becomes terms and terms becomes types " but
“a type as a term becomes a term " and, at the same time,
"a type as type remains a type".

Thus, "a type as a term becomes a term and as a type it remains a type". 
And the same round for terms.

Full wording for a chiasm between terms and types over two loci

Explicitly, first the green round,
 "A type σ1.1 as a term M2.1 becomes a term M2.1

 and as a type σ1.1it remains a type σ1.1  for a term M1.1".
 And, 
 "A type σ2.2  as a term M1.2 becomes a term M1.2

  and as a typeσ2.2 it remains a type σ2.2 for a term M2.2".
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Explicitly, first the green round,
 "A type σ1.1 as a term M2.1 becomes a term M2.1

 and as a type σ1.1it remains a type σ1.1  for a term M1.1".
 And, 
 "A type σ2.2  as a term M1.2 becomes a term M1.2

  and as a typeσ2.2 it remains a type σ2.2 for a term M2.2".

 And simultaneously, mediated,
   the second round in red, the same for terms:
 "A term M1.1 as a type σ2.1 becomes a type σ2.1

   and as a term M1.1 it remains a term M1.1 for a type σ1.1".
   And,
   "A term M2.2as a type σ1.2 becomes a type σ1.2

  and as a term M2.2it remains a term M2.2 for a type σ2.2".

 And finally, between terms M1.1 and M2.2 and types σ1.1 and σ2.2, 
  a categorial coincidence is realized.  
  While between terms and types a morphism (order relation) exists.

Fig . 2  Complete interactional scheme

interaction scheme

Ci,k-1
t , Ci,k

t , Ci,k+1
t  || Cj,k-1

t , Cj,k
t , Cj,k+1

t 

Ci,k
t+1 ⟶ Cj,k

t+1 ≡ Cj,k
t

Cj,k-1
t , Cj,k

t , Cj,k+1
t 

Hence, this kind of memory is a complexion of ‘memory’ and ‘logic’ as it is supposed for memristive behavior.

There are four basic components plus the clock in the interaction paradigm of morphoCAs.

Calculation :
send receive,
accept reject
in generalized time

In contrast to the classical CA with its send/receive properties, there are four basic components plus the clock in the 
paradigm of morphoCAs. The sens/receive or read/write mechanism is augmented in morphoCAs by a decision-
making (trans-logical) component of accept/reject in regard of the sub-system property. 

The contrast to Konrad Zuse's conception of calculation is obvious :

“Rechnen heisst : Aus gegebenen Angaben nach einer Vorschrift neue Angaben bilden.” (Konrad Zuse)
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The discontexturaliy of morphoCAs is certainly also not in hamony with Karl Hewitt’s monolithic actor approach to 
computation.

A systematic deconstruction has obviously to deconstruct all 4+1 components of the diagram.

The very first deconstruction happens by parametrizing the inputs. Each input/output, i.e. send/receive action might 
belong to a different contexture. Hence, the very first task of the automaton is to handle such profound diversity. This 
job is obsolete for classical CAs because all data are from/in the same contexture.

This contextural embodiment of the fourth term, Ckt+1, explains why the term is not just an extensional result of a 
mapping but is structurally depending on the conceptual ‘history’ of the 3 previous actions. 

This understanding of the morphoCA rules relates back to the concept of the ϵ/ν-structure of morphic objects and 
actions within the concept of the proposed memristive automata.

http : // www.thinkartlab.com / pkl / media / SKIZZE - 0.9 .5 - medium.pdf

http : // works.bepress.com / thinkartlab / 20 /

http : // transhumanism.memristics.com / Diagrammatik.ppt.htm

From memristive flip-flop to memristive interactions

Finite state machines and morphoCAs

“A Cellular Automaton (CA) is an infinite, regular lattice of simple finite state machines that change their states 
synchronously, according to a local update rule that specifies the new state of each cell based on the old states 
of its neighbors.” (Kari)

http://users.utu.fi/jkari/ca/CAintro.pdf

“Furthermore, since the ECA is actually a finite state machine then the present state of the neighbor-
hood Ck-1

t , Ck
t, Ck+1

t  of cell Ck
t  at time step t and the next state Ck

t+1 at time step t + 1, can be analyzed 

by the state transition table and the state diagram depicted in figure 4.”  (K. Salman)

Figure 4, state machine analysis of Rule 30

http : // www.slideshare.net / ijcsit / 5413 ijcsit03

ECA Rule 30

FromDigits[{0, 0, 0, 1, 1, 1, 1, 0}, 2]

30

FromDigits[kAryFromRuleTable[
ruleECA[{1, 2, 3, 9, 5, 11, 13, 15}]], 2]

30
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     ruleECA[{1, 2, 3, 9, 5, 11, 13, 15}] = rule30

rule30 111 110 101 100 011 010 001 000
1 - - - (5) : 1 (9) : 1 (3) : 1 (2) : 1 -
0 (15) : 0 (13) : 0 (11) : 0 - - - - (1) : 0

http : // memristors.memristics.com / MorphoFSM / Finite
%20 State %20 Machines %20 and %20 Morphogrammatics.html

System of elementary kenomic cellular automata rules in trito-difference form

R1 R2 R3 R4

■ ■ ■
- ■ -

■ ■ □
- ■ -

■ □ ■
- ■ -

■ □ □
- ■ -

R6 R7 R8 R9

■ ■ ■
- □ -

■ ■ □
- □ -

■ □ ■
- □ -

■ □ □
- □ -

R5

■ □ ■
- ■ -

R10

■ □ ■
- □ -

 

R11 R12 R13 R14 R15

■ ■ □
- ■ -

■ □ ■
- ■ -

■ □ □
- ■ -

■ □ ■
- ■ -

■ □ ■
- ■ -

e1 e2 e4
- e3 e5
R1 - e6

e1 v2 e4
- v3 e5
R2 - v6

v1 e2 e4
- v3 v5
R3 - e6

v1 v2 e4
- e3 v5
R4 - v6

e1 e2 v4
- e3 v5
R6 - v6

e1 v2 v4
- v3 v5
R7 - e6

v1 v2 v4
- e3 e5
R8 - v6

v1 v2 v4
- e3 e5
R9 - e6

e1 v2 v4
- v3 v5

R11 - v6

v1 e2 v4
- v3 v5

R12 - v6

v1 v2 e4
- v3 v5

R13 - v6

v1 v2 v4
- v3 e5

R14 - v6

v1 v2 v4
- e3 v5
R5 - v6

v1 v2 v4
- v3 v5

R10 - e6

v1 v2 v4
- v3 v5

R15 - v6

 

Interpretation

Difference scheme

The difference scheme is a scheme of differences, and not just a relational mapping from C3to C.

Also an evolution from [Ck-1t , Ckt, Ck+1t ] to Ckt+1 is defined by all previous elements of time t of the specified CA 
rule there is no concrete differentiation between the new state of  Ckt+1 and the previous states defined. 

Hence, the new state Ckt+1 of a classical CA might incorporate any arbitrary value from a pre-given set of values 
and is not retro-recursive characterized by the differences of the previous constellation it depends.
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Ck-1t , Ckt, Ck+1t

Ckt+1
⟹

Ck-1
t , Ck

t, Ck+1
t

Ck
t+1

⟹
d1 d2 d4
- d3 d5
- - d6

, with d = {ϵ, ν}, ϵ = equal, ν = non-equal

d1 = diff ( Ck-1
t , Ck

t),
d2 = diff ( Ck-1

t , Ck+1
t ),

d3 = diff ( Ck
t, Ck+1

t ),
d4 = diff ( Ck-1

t , Ck
t+1),

d5 = diff ( Ck+1
t , Ck

t+1),
d6 = diff ( Ck

t, Ck
t+1).

FSA Example

FSA(aabc)                                        MorphoFSA[aabc]

http : // memristors.memristics.com / CA -
Overview / Short - %20 Overview %20 of %20 Cellular %20 Automata.pdf

Monomorphic  prolongation

First aspect: iteration
Given a morphogram MG, which is always a localized pattern in a kenomic matrix, a prolongation (successor, 
evolution) of the morphogram is achieved with the successor operator si. To each prolongation a further prolongation 
is defined by the iterated application of the operator si. 

The morphogrammatic succession MG ⟶s i MG is founded by its model gm ⟶h j gm and the morphism f, guarantee-

ing the commutativity of the construction.  
As a third rule, the iterability of the successor operation is arbitrary, which is characterised by the commutativity of 
the diagram. Hence, the conditions for a (retrograde) recursive formalisation are given. 
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First aspect: iteration
Given a morphogram MG, which is always a localized pattern in a kenomic matrix, a prolongation (successor, 
evolution) of the morphogram is achieved with the successor operator si. To each prolongation a further prolongation 
is defined by the iterated application of the operator si. 

The morphogrammatic succession MG ⟶s i MG is founded by its model gm ⟶h j gm and the morphism f, guarantee-

ing the commutativity of the construction.  
As a third rule, the iterability of the successor operation is arbitrary, which is characterised by the commutativity of 
the diagram. Hence, the conditions for a (retrograde) recursive formalisation are given. 

Second aspect: anti-dromicity
Each prolongation is realized simultaneously by an iterative progression and an antidromic retro-gression. That is, 
the operation of prolongation of a morphogram is defined retro-grade by the possibilities given by the encountered 
morphogram. A concrete prolongation is selecting out of those possibilities its specific successions. All successions 
are to be considered as being realized at once. 

Third aspect: simultaneity and interchangeability
This simultaneity of different successions defines the range of the prolongation. This definition of morphogrammatic 
prolongation is not requiring an alphabet and a selection of a sign out of the alphabet. Hence, the concept of mor-
phogrammatic prolongation is defined by the two aspects of iteration and antidromic retro-gradeness of the succes-
sor operation. The simultaneity of the prolongations is modeled by the interchangeability of its actions.

Fourth aspect: diamond characterization of antidromicity
Both aspects together, repeatability and antidromicity with its simultaneous and interchangeable realizations, are 
covered by the diamond-theoretic concept of combination of operations and morphisms, i.e. composition and 
saltisition, between morphogramatic prolongations.

The philosophical status of morphoCAs has yet to be determined.“What’s after digitalism?” might give a hint.

https : // www.academia.edu / 1 873 531 / Digital_Philosophy._Formal
_Ontology _and _Knowledge _Representation _in _Cellular _Automata

Internal structure of the morphogrammatic transition rule

Recall definitions: classical transition rule

"Rigid computations have another node parameter: location or cell. Combined with time, it designates the 
event uniquely. Locations have structure or proximity edges between them. They (or their short chains) 
indicate all neighbors of a node to which pointers may be directed.

“CA are a parallel rigid model. Its sequential restriction is the Turing Machine (TM). The configuration of CA 
is a (possibly multi-dimensional) grid with a fixed (independent of the grid size) number of states to label 
the events. The states include, among other values, pointers to the grid neighbors. At each step of the 
computation, the state of each cell can change as prescribed by a transition function of the previous states 
of the cell and its pointed-to neighbors. The initial state of the cells is the input for the CA. All subsequent 
states are determined by the transition function (also called program)."  Leonid A. Levin. Fundamentals of 
Computing.

http://www.cs.bu.edu/fac/lnd/toc/z/z.html 

Morphogrammatic transition rule

http : // memristors.memristics.com / Memristive %20
Cellular %20 Automata / Memristive %20 Cellular %20 Automata.html

General scheme

rule set, start string

string pos = (Nr., l)
ReLabel

ReLabel (string)
↙ ↘ NextGen

NextGen (ReLabel (string))
↘ ↓ ↙ ∈ rule - set?

〈yes; no〉
apply rule

result

Example

rule set = {1, 7, 8, 4}, start string

[bcb] : string at pos (Nr., l)
ReLabel

[aba]
↙ ↘ NextGen

[abaa][abab][abac]
↘ ↓ ↙ [abaa] ∈ rule - set?

〈yes; no〉
apply : [abaa] rule7

result = [a]

NextGen is in this morphoCA context a retrograde recursive action and not to be confued by a classical recursion.

What makes the difference?
1. retro - grade recursivity
2. irreducible heterogeneity
3. interactivity and reflectionality
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1. retro - grade recursivity
2. irreducible heterogeneity
3. interactivity and reflectionality

Morphogrammatic example

evol i (MG) :
∀ i ∈ (mg (MG)), 1 ≤ i ≤ mg (MG) + 1

second retrogression first
selection choice

([mg 1 ... mg i ... mg n] ⟶ [mg 1 ... mg i .. mg n]) ⟶ [mg 1 ... mg i ... mg n mg n+1]
choice selection

first ⟶
progression

second

http : // memristors.memristics.com / MorphoReflection / Morphogrammatics
%20 of %20 Reflection.html

Flow charts for morphoCAs

Full mediation of input

Basic scheme : Explanation for morphoCA(3,3)

Clock(3,3) = synch Clock1.1, Clock2.2, Clock3.3

Calculation(3,3) = mediation TRL1 .1, TRL2 .2, TRL3 .3 :

TRL1∐1.2,0 TRL2∐1.2,3 TRL3 =
TRL1 -
- TRL3

TRL2 -

intra(3,3) = ( TRL1 .1 (Ct1k, Ct1k + 1, Ct1k - 1)
∐

TRL2 .2 (Ct2k, Ct2k + 1, Ct2k - 1))
∐
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∐
TRL3 .3 ((Ct3k, Ct3k + 1, Ct3k - 1)

ENV(3,3) = [ ENV1∐ ENV2] ∐ ENV3 :

Ct1k + 1 ∐ Ct3k + 1
Ct2k - 1 ∐ Ct2k + 1
Ct3k - 1 ∐ Ct3k - 1

ENV1∐1.2,0 ENV2∐1.2,3 ENV3 =
ENV1 -
- ENV3

ENV2 -

Arrows

directed arrows : input /output arrows,
open headed arrows : inter - and trans - action, mediation arrows

Explanation for morphoCA(4,4)

morphoCA(4,4) =

CA1 E E
- CA3 E

CA2 E CA6
E CA5 E

CA4 E E

::

Full interaction and mediation table for morphoCA(3,3)

S11 S11 S21, 31
S22 S22 S12, 32
S33 S33 S13, 23
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S1 D11 - Q11 Q12 - D21, Q13 - D31
S2 D22 - Q22 Q21 - D12, Q23 - D32
S3 D33 - Q33 Q13 - D31, Q23 - D32

morphoCA(3,3) :

CA 1 2 3

1 CA1.1 CA2.1 CA3.1

2 CA1.2 CA2.2 CA3.2

3 CA1.3 CA2.3 CA3.3

Discontexturality of distributed CAs

Poly-layered grid structure

... C1tk + 1 C1tk C1tk - 1 ...

... C2tk + 1 C2tk C2tk - 1 ...

... C3tk + 1 C3tk C3tk - 1 ...
⟹

... C1t + 1 k + 1 C1t + 1 k C1t + 1 k - 1 ...

... C2t + 1 k + 1 C2t + 1 k C2t + 1 k - 1 ...

... C3t + 1 k + 1 C3t + 1 k C3t + 1 k - 1 ...

An interpretation of the discontexturality diagram shows that the grid structure of distributed CAs of the morphoCAs 
are in fact not 1-D CAs but disseminated 1-D CAs. It also shows that disseminated CAs are not necessarily 2- or 3-
dimensional or higher. What we see as a linear 1-D grid by the visualization of morphoCA actions is in fact a 
composition of different parallel 1-D grids projected onto an 1-D grid of an uninterpteted output.

Hence, in functional terms, there is no mapping from {0, 1, 2, 3}3 -> {0,1,2,3} but a composition of partial sub-maps.

Nevertheless, poly-layered grids are not multi-layered, because the layers of a multi-layered system are unified 
under the umbrella of First-Order Logic with Modal logic and General Ontology (Upper Ontology). While dis-
contexturality implies an interplay of a multitude of irreducibly different logics, each containing their inter- and trans-
logical operators, additionally to the full set of intra-logicial operators too.

Multi-layerd systems are logically defined by the basic intra-logical operations only. Poly-layerd systems are 
involved in an interplay of dis-contextural operations of inter- and trans-contextural actions.

This discontextural approach obviously is in strict conflict with Proposition1 of category theory and its unique 
universe U:

                If x ∈ U and y ⊆ x, then y ∈ U.
As usual in such fundamental situation, the proposition is circular. It presumes the uniqueness of its logical universe 
to work for a definition of its unique category-theoretical universe which is taken as the base for the definition of 
First-Order Logic and its unique universe of terms.

“Polycontexturality alone is not enough to realize the interwoven dynamics a new world-view is desperate 
for. Gotthard Gunther introduced his proemial relationship to dynamize his contextures, albeit still restricted 
to a uni-directional movement.The concept of metamorphosis as part of the diamond strategies, based on 
polycontexturality and disseminated over the kenomic matrix, is a further step to realize a radical paradigm 
change in our way of thinking and designing futures.”
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http : // memristors.memristics.com/Polyverses/Polyverses.html

The projection marks the difference of the deep-structure and the surface structure of the productions of 
morphoCAs.

It makes it clear, again, that “What you see is not what it is”. Hence, any ontologizing will fail.

yellow C1t + 1 k - C3tk - 1 -
red - - - C4t + 1 k
blue - C2t + 1 k - -
green - - - -

projection ⟹ C1t + 1 k C2t + 1 k C3tk - 1 C4t + 1 k

The difference between multi-layered and poly-layered systems got a conceptual sketch with the paper:

Memristics: Dynamics of Crossbar Systems
Strategies for simplified polycontextural crossbar constructions for memristive computation

“Interchangeability is part of a new axiomatics of poly-categorical diamond systems still to be developed. 
Interchangeability is defined intra-contextural for composition and yuxtaposition, and trans-contextural for 
interactions, like mediation, replication, iteration and transposition.”

http://www.thinkartlab.com/Memristics/Poly-Crossbars/Poly-Crossbars.pdf
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Claviatures for morphoCAs

Claviature: ruleDM

k 1 6

l 2 7 11

m 3 8 12

n 4 9 13

o 5 10 14 15

steps 1

Claviature: Random ruleDM

k 1 6

l 2 7 11

m 3 8 12

n 4 9 13

o 5 10 14 15

steps 1
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Claviature: ruleDCKV

a 1111 1112

b 1121 1122 1123

c 1211 1212 1213

d 1221 1222 1223

e 2121 2122 2123

f 2211 2212 2213

g 2221 2222 2223

h 2111 2112 2113

i 2131 2132 2133 2130

j 1231 1232 1233 1230

k 2231 2232 2233 2230

l 2311 2312 2313 2310

m 2321 2322 2323 2320

n 2331 2332 2333 2330

o 2301 2302 2303 2300

steps 6

Analysis of ruleDM[{1,11,3,9,x}]

ruleDM[{1, 11, 3, 9, 5}]

reduced ruleDM[{1, 11, 3, 9, x}]

Subrules Subsystems

ruleDM[1] : {0, 0, 0} → 0, S1, 3 : yellow
ruleDM[3] : {0, 1, 0} → 0, S1
ruleDM[9] : {1, 0, 0} → 0, S1
ruleDM[3] : {0, 2, 0} → 0, S3
ruleDM[9] : {2, 0, 0} → 0, S3
ruleDM[11] : {0, 0, 1} → 2, S1 → S2, 3 : blue
ruleDM[11] : {0, 0, 2} → 1, S3 → S1, 2 : red
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ruleDM[{1, 11, 3, 9, x}]
x / yz 00 10 20 01 02
0 [1] : 01,3 [8] : 01 [8] : 03 [11] : 22,3 [11] : 11,2
1 [9] : 01 - - - -
2 [9] : 03 - - - -

Distribution density: [5,1,1]

0 / 5 1 / 1 2 / 1
000
010
100
200
020

002 001

Flow chart for ruleDM[{1,11,3,9,x}]

Labeled interaction diagram for ruleDM[{1, 11, 3, 9, x}]

Explicit transition system table for ruleDM[{1,11,3,9,x}]

TRL1 .1 || TRL3 .3
{0, 0, 0} -> 0
: D1 .1 → Q1 .1 → TRL1 .1 || D3 .3 → Q3 .3 → TRL3. 3

TRL1 .1
{0, 1, 0} -> 0,
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{0, 1, 0} -> 0,
{1, 0, 0} -> 0
: D1 .1 → Q1 .1 → TRL1 .1

TRL3 .3
{0, 2, 0} → 0,
{2, 0, 0} → 0
: D3 .3 → Q3 .3 → TRL3 .3

TLR2 .2 || TLR3 .3

{0, 0, 1} → 2

: Q1 .2 → Q3 .2 → TLR3 .3 || Q1 .2 -> Q2 .1 → TLR22

TLR1 .1 || TLR2 .2
{0, 0, 2} → 1
: Q3 .1 → Q1 .3 → TLR1 .1 || Q3 .2 -> Q2 .1 → Q2 .2 → TLR22

Simplified diagram

Example: ruleDM[{1, 11, 3, 9, 15}] step-wise realization

k 1 6

l 2 7 11

m 3 8 12

n 4 9 13

o 5 10 14 15

cell

initial

start (init) : yellow, red 
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,

step 37 : {0, 0, 0} → 0, {0, 1, 0} → 0, {1, 0, 0} → 0 :

TRL1 .1 || TRL3 .3
{0, 0, 0} -> 0
: D1 .1 → Q1 .1 → TRL1 .1 || D3 .3 → Q3 .3 → TRL3 .3
TRL1 .1
{0, 1, 0} -> 0, : D1 .1 → Q1 .1 → TRL1 .1
{1, 0, 0} -> 0

Start of the morphoCA with init {{1}, 0} producing the entry “red” with an environment “yellow” with the properties 
defined at step 37 by the rules:
{0,0,0}→0 of sys1||sys3 and  {0,1,0}→0, {1,0,0}→0  of sys1.

construction: blue, yellow, red, yellow

step 44 : {0, 0, 1} → 2 :

TLR2 .2 || TLR3 .3
{0, 0, 1} → 2
Q1 .2 → Q3 .2 → TLR3 .3 || Q1 .2 -> Q2 .1 → TLR22

At step 44, the memory decides that the received value “2” doesn’t belong to its range, i.e. the system 1, defined by 
the values {0,1}. 
The value “2” of system 3 defines a new start at the system 3 with the properties of  {0,0,2}→1, {0,2,0}→0, {2,0,0}→0.

step 66 : {0, 0, 2} → 1 :

TLR2 .2 || TLR3 .3
{0, 0, 1} → 2
Q1 .2 → Q3 .2 → TLR3 .3 || Q1 .2 -> Q2 .1 → TLR22

TRL3 .3
{0, 2, 0} → 0, : D3 .3 → Q3 .3 → TRL3 .3
{2, 0, 0} → 0

Again, at the step 66, the decider of the memory unit of system 3 decides that the value “1” doesn’t belong to its 
range, i.e. the system 3, defined by the values {0,2}. 
The value “1” of memory 3 defines a continuation in the system 1 with the background properties of {0,2,0}→0, 
{2,0,0}→0.

The background is symbolized numerically by 0, i.e. yellow. But “0” belongs to 2 different sub-systems defined by {0, 
1} and {0, 3}. 
What counts is not just the value in a system but its contextual relation or difference to other values. Hence the 
presupposed rule: {0,0,0} -> 0, holds in general but its significance depend on its context.

iteration of construction
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step 88 : {0, 0, 1} → 2 :

TLR2 .2 || TLR3 .3
{0, 0, 1} → 2
Q1 .2 → Q3 .2 → TLR3 .3 || Q1 .2 -> Q2 .1 → TLR22

At step 88, the memory decides that the received value “2” doesn’t belong to its range, i.e. the system 1, defined by 
the values {0,1}. 
The value “2” of system 3 defines a new start at the system 3 with the properties of  {0,0,2}→1, {0,2,0}→0, {2,0,0}→0.

step 110 : {0, 0, 2} → 1, {0, 2, 0} → 0, {2, 0, 0} → 0,

TLR1 .1 || TLR2 .2
{0, 0, 2} → 1
Q3 .1 → Q1 .3 → TLR1 .1 || Q3 .2 -> Q2 .1 → Q2 .2 → TLR22

TRL3 .3
{0, 2, 0} → 0, : D3 .3 → Q3 .3 → TRL3 .3
{2, 0, 0} → 0

Again, at the step 110, the decider of the memory unit of system 3 decides that the value “1” doesn’t belong to its 
range, i.e. the system 3, defined by the values {0,2}. The value “1” of memory 3 defines a continuation in the system 
1 and in system 2 with the properties of  {0,1,0}→0, {1,0,0}→0.
And so on.

Unfortunately it is necessary to go through these tedious phenomenological interpretations of the mechanism of 
morphoCAs because without this kind of modelling it isn’t possible to understand the nature of their outcome. Just to 
enjoy interesting pictures and listening to unheard sounds is not yet enough to understand the novelty of the mor-
phogrammatic approach towards cellular automata and automata in general.

The switch from one automaton to the net of automata is not just ruled by the clock but also by the logic of the unit. If 
there is a transjunctional result of the logical unit, the calculations have to switch to another automaton. Different 
types of polycontextural transjunctions are ruling such interactions. Otherwise, without a switch, it stays inside the 
domain of the automaton for further intra-contextural calculations.

http://www.thinkartlab.com/pkl/media/Dynamic%20 Semantic %20 Web.pdf

http : // memristors.memristics.com/Notes %20 on %20 Polycontextural %20 Logics/Notes %20 on %20 Polycontextu-
ral %20 Logics.pdf

PCA, programmable CAs

“As the matter of fact, PCA are essentially a modified CA structure. It employs some control signals on a CA struc-
ture. By specifying certain values of control signals at run time, a PCA can implement various functions dynamically 
in terms of different rules.”
http://infonomics-society.ie/wp-content/uploads/ijicr/published-papers/volume-3-2012/Security-of-Telemedical-
Applications-over-the-Internet-using-Programmable-Cellular-Automata.pdf

For morphoCAs, the range of reconfiguring processors is not limited to the range of classical CAs but spans over a 
wide range of trans-classical paradigms of morphoCAs also including classical CAs.

The specification of morphoCAs shows clearly the paradigmatical difference between morphoCAs, ECAs and PCAs.

Concerning the sub-rule approach, morphoCAs might be seen as ‘hybrid’ CAs with transjunctional functions and 
mediation to be considered.

3. PCL diagrams for morphoCA(3,3) with interaction and 
mediation
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3. PCL diagrams for morphoCA(3,3) with interaction and 
mediation

Analysis of minimized ruleDCM[{1, 2, 12, 13, 5}]

ArrayPlot[CellularAutomaton[
{
{0, 0, 0} → 0,

{0, 0, 1} → 0, {0, 0, 2} → 0, {2, 2, 0} → 2,

{1, 2, 1} → 0, {0, 1, 0} → 2,

{0, 2, 2} → 1, {1, 0, 0} → 2, {2, 0, 0} → 1,

{0, 1, 2} → 0, {2, 1, 0} → 2
},
{{1}, 0}, 11],

ColorRules -> {1 -> Red, 0 -> Yellow, 2 → Blue, 3 → Green},
Mesh → True, ImageSize → 100]

Analysis

ruleDM[{1, 11, 3, 9, x}]
x / yz 00 10 12 01 02
0 [1] : 01,3 [12] : 21 [5] : 0 [11] : 0 [11] : 01,2
1 [13] : 21 - - - -
2 [13] : 13 [5] : 2 - - -

22
[13] : 13

-
-

Distribution density: [7,2,2]

The distribution density of a morphoCA constellation gives a simple measure for classification and comparison of 
morphoCAs.
It holds for reduced and non-reduced morphoCA constellations. 

0 / 7 1 / 2 2 / 2
000
010
001
002
012

200
022

010
210

S1 S1 S3
S3 S3 -

S2, 1, 2 - S1, 3, 1
S1, 3, 2 - S1, 1, 3

Analysis of the interaction patterns

{0, 0, 0} → 0, : sys1
{0, 0, 1} → 0,

: intra

{0, 0, 2} → 0, : sys3
{2, 2, 0} → 2,
{0, 0, 0} → 0
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{1, 2, 1} → 0, : sys2, 1, 2 → sys1 || sys3 || sys1
{0, 1, 0} → 2, : sys1, 1, 1 → sys3 || sys2 || sys3
{1, 0, 0} → 2, : sys1, 1, 1 → sys2 || sys3 || sys3
{0, 2, 2} → 1, : sys3, 3, 3 → sys1 || sys2 || sys2
{2, 0, 0} → 1, : sys3, 3, 3 → sys2 || sys1 || sys1

: inter

{0, 1, 2} → 0, : sys1, 3, 2 → sys1 || sys3 || sys1
{2, 1, 0} → 2 : sys2, 3, 1 → sys3 || sys3 || sys2

: trans

Diagram scheme for ruleDCM[{1, 2, 12, 13, 5}]

Simplified diagram of interactions and mediation for morphoCA(3,3)

Simplified diagram of interactions and mediation for morphoCA(3,3)

Analysis of ruleDM[{1, 2, 12, 13, 5}]

ruleDM[{1, 2, 12, 13, 5}]
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ArrayPlot[CellularAutomaton[
{
{0, 0, 0} → 0,
{0, 0, 1} → 0, {0, 0, 2} → 0, {0, 0, 3} → 0,
{2, 2, 0} → 2,
{1, 2, 1} → 0, {0, 1, 0} → 2,
{0, 2, 2} → 3, {1, 0, 0} → 2, {2, 0, 0} → 1, {3, 2, 2} → 0,
{0, 2, 1} → 0, {0, 3, 2} → 0, {2, 1, 0} → 2, {3, 2, 1} → 3

},
{{1}, 0}, 11],

ColorRules -> {1 -> Red, 0 -> Yellow, 2 → Blue, 3 → Green},
Mesh → True, ImageSize → 100]

Analysis

intra + inter + trans

ruleDM[{1, 2, 12, 13, 5}]

x / yz 00 01 02 03 10 20 21 22
0 0 0 0 0 2 E 0 3
1 2 E E E E E 0 E
2 1 E E E 2 2 E E
3 E E E E E E 3 0

Distribution density: [7,1,3,1]

0 / 7 1 / 1 2 / 3 3 / 1
000
001
002
003
021
121
322

200 100
010
210

321

Analysis of the interaction patterns

0, 0, 0 → 0, : sys1
0, 0, 1 → 0,

: intra

0, 0, 2 → 0, : sys3
2, 2, 0 → 2,
0, 0, 0 → 0

0, 0, 3 → 0, : sys6
0, 0, 0 → 0
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1, 2, 1 → 0, : sys2, 2, 2 → sys1 || sys3 || sys1
0, 1, 0 → 2, : sys1, 1, 1 → sys3 || sys2 || sys3
1, 0, 0 → 2, : sys1, 1, 1 → sys2 || sys3 || sys3
0, 2, 2 → 3, : sys3, 3, 3 → sys1 || sys2 || sys2
2, 0, 0 → 1, : sys3, 3, 3 → sys2 || sys1 || sys1

3, 2, 2 → 0, : sys4, 4, 4 → sys6 || sys3 || sys3

: inter

0, 2, 1 → 0, : sys3, 1, 2 → sys1 || sys3 || sys1
2, 1, 0 → 2 : sys2, 3, 1 → sys3 || sys3 || sys2

0, 3, 2 → 0, : sys6, 3, 4 → sys4 || sys6 || sys3
3, 2, 1 → 3 : sys4, 5, 2 → sys3 || sys4 || sys5

: trans

0, 1 = sys1, 1, 2 = sys2, 2, 3 = sys4
0, 2 = sys3, 1, 3 = sys5,

0, 3 = sys6

4. PCL diagrams with interactions and mediations: 
morphoCA(4,3,3)

Analysis of ruleDM[{1,11,3,4,15}]

ruleDM[{1, 11, 3, 4, 15}]

{1}
{2, 0, 1}

{1, 0, 3, 0, 1}
{2, 0, 2, 0, 2, 0, 1}

{1, 0, 2, 0, 2, 0, 3, 0, 1}
{2, 0, 3, 0, 2, 0, 1, 0, 2, 0, 1}

{1, 0, 1, 0, 1, 0, 3, 0, 3, 0, 3, 0, 1}
{2, 0, 1, 0, 1, 0, 2, 0, 3, 0, 3, 0, 2, 0, 1}

{1, 0, 3, 0, 1, 0, 3, 0, 1, 0, 3, 0, 1, 0, 3, 0, 1}
{2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 1}

{1, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 3, 0, 1}
{2, 0, 3, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 1, 0, 2, 0, 1}

Reduced 
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Random (restricted by reduction)

Analysis

Analysis of ruleDM[{1,11,3,4,15}]

ruleDM1, 11, 3, 4, 15

x/yz 00 01 10 02 03 20 30
0 0; sys1, 3 2; sys2, 3 0; sys1 1; syss1, 3 - 0; sys2 0; sys3

1 1; sys1 1; sys1 - 3; sys2, 3 2; sys - -

2 - 3; sys - 2; sys2 1; sys2, 4 - -

3 - 2; sys - 2; sys 3; sys3 - -

Distribution density: [4,5,4,3]

ruleDM[{1, 11, 3, 4, 15}]

x/yz 00 01 10 02 03 20 30
0 0 2 0 1 - 0 0
1 1 1 - 3 2 - -

2 - 3 - 2 1 - -

3 - 2 - 2 3 - -

04 1/5 24 33

000
010
020
030

101
100
002
203
302

001
202
103
301

303
102
201

{1}
{2, 0, 1}

{1, 0, 3, 0, 1}
{2, 0, 2, 0, 2, 0, 1}

Analysis of the interaction patterns

Calculation: intra-contextural action

{0, 0, 0} → 0, : sys1
{0, 1, 0} → 0,
{1, 0, 1} → 1,
{1, 0, 0} → 1,

{0, 2, 0} → 0, : sys3
{2, 0, 2} → 2,
{0, 0, 0} → 0

{0, 3, 0} → 0, : sys6
{3, 0, 3} → 3,
{0, 0, 0} → 0

Alternation: trans-contextural action from sys1 to sys2||sys3 and from sys3 to sys2||sys1
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{0, 0, 1} → 2 : sys1 → sys3 || sys1 || sys3
{0, 0, 2} → 1 : sys3 → sys1 || sys2 || sys1

Mediation: poly-layered action

{1, 0, 2} → 3 : sys1, 2, 3 → sys5 || sys6 || sys4
{1, 0, 3} → 2 : sys1, 6, 5 → sys2 || sys3 || sys4
{2, 0, 3} → 1 : sys3, 6, 4 → sys2 || sys1 || sys5
{2, 0, 1} → 3 : sys3, 6, 4 → sys2 || sys1 || sys5
{3, 0, 1} → 2 : sys6, 5, 1 → sys4 || sys1 || sys3
{3, 0, 2} → 1 : sys6, 4, 3 → sys5 || sys2 || sys1

Interpretation of mediation

{1, 0, 2} → 3 : sys1, 2, 3 → sys5 || sys4 || sys6
{1, 0, 3} → 2 : sys1, 5, 6 → sys2 || sys4 || sys3

{0, 1} = sys1, {1, 2} = sys2, {2, 3} = sys4
{0, 2} = sys3, {1, 3} = sys5,

{0, 3} = sys6

Transition system table for ruleDM[{1,11,3,4,15}]

S1 S1 S2, 3
S2 S2 -
S3 S3 S1, 2

S1, 2, 3 S5, 6, 4
S1, 6, 5 S2, 3, 4
S3, 6, 4 S2, 1, 5

Diagram scheme for ruleDM[{1, 11, 3, 4, 15}]

Diagram for ruleDM[{1, 11, 3, 4, 15}]

The rules placed in the first half are the rules of intra-contextural actions. They don’t refer to other contextures. The 
rules in the upper part represent the trans-contextural actions between different contextures depicted as directed 
arrows. 
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The rules placed in the first half are the rules of intra-contextural actions. They don’t refer to other contextures. The 
rules in the upper part represent the trans-contextural actions between different contextures depicted as directed 
arrows. 

The compound morphogram of ruleDM[{1, 3, 4, 11, 15}] reflects the mediation of intra- and inter-contextural actions 
of the flow chart. It is the morphogram compound of the flow chart of the actions of the morphoCA ruleDM[{1, 3, 4, 
11, 15}] . 

■ ■ ■
- ■ -

■ □ ■
- ■ -

■ □ □
- ■ -

■ ■ □
- ■ -

■ □ ■
- ■ -

Non-reducible examples

Non-reducible automata definitions might be used as complete irreducible building-blocs for complex morphoCAs. 

For complete irreducible building-blocs, all entries of the transition table are occupied. In other terminology, all intra-, 
inter- and trans-contextural sections of the flow-chart scheme are occupied.

Irreducible rules are playing the same role for morphoCAs as the irreducible binary functions like NAND, XOR for 
binary reductions. With NAND or NOR, all other two-valued binary function are defined.  Because they are not 
reducible they are used as elementary devies in electronic circuit consturctions.

Unfortunately, there is not yet an algorithmic procedure to minimize (reduce) the functional representation of mor-
phoCA rules.

The question for morphic patterns arises: How many irreducible patterns exist for morphoCA(3,3)?

In analogy:
“No logic simplification is possible for the above diagram. This sometimes happens. Neither the methods of Kar-
naugh maps nor Boolean algebra can simplify this logic further. [..] Since it is not possible to simplify the Exclusive-
OR logic and it is widely used, it is provided by manufacturers as a basic integrated circuit (7486).”
http://www.allaboutcircuits.com

http : // memristors.memristics.com // Reduction %20 and %20 Mediation/Reduction %20 and %20 Mediation.pdf

Example : ruleDM[{1, 2,12,4,15}] 

reducible to steps 22

ruleDM[{1, 2, 12, 4, 15}]

Reducts

{1, 1, 3} → 1, {3, 3, 0} → 3, {0, 2, 0} → 1,
{1, 0, 1} → 2, {3, 1, 3} → 2,
{2, 1, 1} → 2 {3, 0, 0} → 3, {3, 2, 2} → 3
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Not reduced

ruleDM[{1, 2, 12, 4, 15}]

Random

Analysis

Analysis of the interaction patterns
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Computation: intra-contextural actions 

{0, 0, 0} → 0, : sys1
{0, 0, 1} → 0,
{0, 1, 1} → 0,
{1, 0, 0} → 1,
{1, 1, 0} → 1,
{1, 1, 1} → 1,

{1, 1, 1} → 1, : Sys2
{1, 1, 2} → 1,
{1, 2, 2} → 1,
{2, 1, 1} → 2,
{2, 2, 1} → 2,
{2, 2, 2} → 2

{0, 0, 0} → 0, : Sys3
{0, 0, 2} → 0,
{0, 2, 2} → 0,
{2, 2, 0} → 2,
{2, 0, 0} → 2,
{2, 2, 2} → 2

{2, 2, 2} → 2, : Sys4
{2, 2, 3} → 2,
{2, 3, 3} → 2,
{3, 2, 2} → 3,
{3, 3, 2} → 3,
{3, 3, 3} → 3

{1, 1, 1} → 1, : Sys5
{1, 1, 3} → 1,
{1, 3, 3} → 1,
{3, 1, 1} → 3,
{3, 3, 1} → 3,
{3, 3, 3} → 3

{0, 0, 0} → 0, : Sys6
{0, 0, 3} → 0,
{0, 3, 3} → 0,
{3, 0, 0} → 3,
{3, 3, 0} → 3,
{3, 3, 3} → 3

Alternation: inter-contextural actions 
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{0, 1, 0} → 2, : sys1 → sys2 || sys3
{1, 0, 1} → 2 : sys1 → sys3 || sys2

{0, 0, 2} → 1 : sys3 → sys1 || sys2
{2, 2, 0} → 1,

{0, 2, 0} → 1,
{2, 0, 2} → 1,

{0, 0, 3} → 2, : sys6 → sys3 || sys4
{3, 3, 0} → 2,

{0, 3, 0} → 2,
{3, 0, 3} → 1,

{1, 2, 1} → 0,
{2, 1, 2} → 0, : sys2 → sys1 || sys3

{2, 2, 3} → 0, : sys4 → sys3 || sys6
{3, 3, 2} → 1, : sys4 → sys5 || sys2

{2, 3, 2} → 1,
{3, 2, 3} → 1,

{1, 1, 3} → 2, : sys5 → sys2 || sys4
{3, 3, 1} → 0, : sys5 → sys6 || sys1

{3, 1, 3} → 2,
{1, 3, 1} → 2,

Mediation: poly-layered trans-contextural action

{0, 2, 1} → 3,
{0, 1, 2} → 3,
{1, 0, 2} → 3,
{1, 2, 0} → 3,
{2, 0, 1} → 3,
{2, 1, 0} → 3 : sys1, 2, 3 → sys5 || sys6 || sys4

{0, 3, 1} → 2,
{0, 1, 3} → 2,
{1, 0, 3} → 2,
{1, 3, 0} → 2,
{3, 1, 0} → 2,
{3, 0, 1} → 2 : sys1, 6, 5 → sys2 || sys3 || sys4

{0, 2, 3} → 1,
{0, 3, 2} → 1,
{2, 3, 0} → 1,
{2, 0, 3} → 1,
{3, 0, 2} → 1,
{3, 2, 0} → 1 : sys3, 6, 4→ sys2 || sys1 || sys5

{1, 2, 3} → 0,
{1, 3, 2} → 0,
{2, 1, 3} → 0,
{2, 3, 1} → 0,
{3, 1, 2} → 0,
{3, 2, 1} → 0 : sys4, 5, 2→ sys6 || sys3 || sys1

Example: ruleDM[{1, 11, 12, 9, 15}]

ruleDM[{1, 11, 12, 9, 15}] : reducible with {3,3,3}-> 3 for steps <33

ruleDM[{1, 11, 12, 9, 15}]
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Non - reducible for steps >22

Random

Example : ruleDM[{1, 11, 12, 4, 15}]
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Random

Analysis

ruleDM[{1, 11, 12, 4, 15}]

x / yz 00 01 02 03 10 20 30 11 12 13 21 22 23 31 32 33
0 0 2 1 2 2 1 2 0 3 2 3 0 1 2 1 0
1 1 2 3 2 2 3 2 1 1 2 0 1 0 2 0 1
2 2 3 1 1 3 1 1 2 0 0 0 2 0 0 1 2
3 3 2 1 1 2 1 2 3 0 1 0 3 1 2 1 3

Distribution density: [14,18,15,10]

0 / 14 1 / 18 2 / 15 3 / 10
000
011
212
312
213
121
221
321
022
123
223
231
132
033

100
002
202
302
203
303
020
220
320
230
111
112
313
122
023
323
032
133

200
001
101
003
103
010
130
211
013
113
222
031
131
331
233

300
201
102
210
120
311
012
021
322
333

DistrDense (ruleDM[{1, 11, 12, 4, 15}]) = (14, 18, 15, 10)

Analysis of the interaction patterns
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Computation: intra-contextural actions 

{0, 0, 0} → 0, : sys1
{0, 1, 1} → 0
{1, 0, 0} → 1,
{1, 0, 0} → 1,
{1, 1, 1} → 1,

{1, 1, 1} → 1, : Sys2
{1, 2, 1} → 2,
{1, 2, 2} → 1,
{2, 1, 1} → 2,
{2, 2, 2} → 2

{0, 0, 0} → 0, : Sys3
{0, 2, 2} → 0,
{2, 0, 0} → 2,
{2, 2, 2} → 2

{2, 2, 2} → 2, : Sys4
{2, 3, 3} → 2,
{3, 2, 2} → 3,
{3, 3, 3} → 3

{1, 1, 1} → 1, : Sys5
{1, 3, 3} → 1,
{3, 1, 1} → 3,
{3, 3, 3} → 3

{0, 0, 0} → 0, : Sys6
{0, 3, 3} → 0,
{3, 0, 0} → 3,
{3, 3, 3} → 3

Alternation: inter-contextural actions 

{0, 0, 1} → 2 : sys1 → sys2 || sys3
{1, 1, 0} → 2 : sys1 → sys3 || sys2

{0, 1, 0} → 2,
{1, 0, 1} → 2,

{0, 0, 2} → 1 : sys3 → sys1 || sys2
{2, 2, 0} → 1,

{2, 0, 2} → 1,
{0, 2, 0} → 1,

{0, 0, 3} → 2, : sys6 → sys3 || sys4
{3, 3, 0} → 2,

{0, 3, 0} → 2,
{3, 0, 3} → 1,

{1, 1, 2} → 0, : sys2 → sys1 || sys3
{2, 2, 1} → 0,

{1, 2, 1} → 0,
{2, 1, 2} → 0,

{2, 2, 3} → 0, : sys4 → sys3 || sys6
{3, 3, 2} → 1, : sys4 → sys5 || sys2

{2, 3, 2} → 1,
{3, 2, 3} → 1,

{1, 1, 3} → 2, : sys5 → sys2 || sys4
{3, 3, 1} → 0, : sys5 → sys6 || sys1

{3, 1, 3} → 2,
{1, 3, 1} → 2,
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Mediation: poly-layered trans-contextural action

{0, 2, 1} → 3,
{0, 1, 2} → 3,
{1, 0, 2} → 3,
{1, 2, 0} → 3,
{2, 0, 1} → 3,
{2, 1, 0} → 3 : sys1, 2, 3 → sys5 || sys6 || sys4

{0, 3, 1} → 2,
{0, 1, 3} → 2,
{1, 0, 3} → 2,
{1, 3, 0} → 2,
{3, 1, 0} → 2,
{3, 0, 1} → 2 : sys1, 6, 5 → sys2 || sys3 || sys4

{0, 2, 3} → 1,
{0, 3, 2} → 1,
{2, 3, 0} → 1,
{2, 0, 3} → 1,
{3, 0, 2} → 1,
{3, 2, 0} → 1 : sys3, 6, 4→ sys2 || sys1 || sys5

{1, 2, 3} → 0,
{1, 3, 2} → 0,
{2, 1, 3} → 0,
{2, 3, 1} → 0,
{3, 1, 2} → 0,
{3, 2, 1} → 0 : sys4, 5, 2→ sys6 || sys3 || sys1

Example : ruleDM[{1, 11, 8, 4, 15}]

ruleDM[{1, 11, 8, 4, 15}]

Random

Analysis
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ruleDM[{1, 11, 8, 4, 15}]

x/yz 00 01 02 03 10 20 30 11 12 13 21 22 23 31 32 33
0 0 2 1 2 1 2 3 0 3 2 3 0 1 2 1 0
1 1 0 3 2 2 3 2 1 1 2 2 1 0 3 0 1
2 2 3 2 1 3 1 1 2 1 0 0 2 0 0 3 2
3 3 2 1 0 2 1 2 3 0 1 0 3 2 0 1 3

Analysis of the interaction patterns

Computation: intra-contextural action

{0, 0, 0} → 0, : sys1
{0, 1, 0} → 0,
{0, 1, 1} → 0
{1, 0, 0} → 1,
{1, 0, 1} → 1,
{1, 1, 1} → 1,

{1, 1, 1} → 1, : Sys2
{1, 2, 1} → 2,
{1, 2, 2} → 1,
{2, 1, 2} → 1,
{2, 1, 1} → 2,
{2, 2, 2} → 2

{0, 0, 0} → 0, : Sys3
{0, 2, 2} → 0,
{0, 2, 0} → 2,
{2, 0, 0} → 2,
{2, 0, 2} → 0,
{2, 2, 2} → 2

{2, 2, 2} → 2, : Sys4
{2, 3, 2} → 3,
{2, 3, 3} → 2,
{3, 2, 2} → 3,
{3, 2, 3} → 2,
{3, 3, 3} → 3

{1, 1, 1} → 1, : Sys5
{1, 3, 1} → 3,
{1, 3, 3} → 1,
{3, 1, 1} → 3,
{3, 1, 3} → 1
{3, 3, 3} → 3

{0, 0, 0} → 0, : Sys6
{0, 3, 0} → 3,
{0, 3, 3} → 0,
{3, 0, 0} → 3,
{3, 0, 3} → 0,
{3, 3, 3} → 3

Alternation: inter-contextural actions 
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{0, 0, 1} → 2 : sys1 → sys2 || sys3
{1, 1, 0} → 2 : sys1 → sys3 || sys2

{0, 0, 2} → 1 : sys3 → sys1 || sys2
{2, 2, 0} → 1,

{0, 0, 3} → 2, : sys6 → sys3 || sys4
{3, 3, 0} → 2,

{1, 1, 2} → 0, : sys2 → sys1 || sys3
{2, 2, 1} → 0,

{2, 2, 3} → 0, : sys4 → sys3 || sys6
{3, 3, 2} → 1, : sys4 → sys5 || sys2

{1, 1, 3} → 2, : sys5 → sys2 || sys4
{3, 3, 1} → 0, : sys5 → sys6 || sys1

Mediation: poly-layered trans-contextural action

{0, 2, 1} → 3,
{0, 1, 2} → 3,
{1, 0, 2} → 3,
{1, 2, 0} → 3,
{2, 0, 1} → 3,
{2, 1, 0} → 3 : sys1, 2, 3 → sys4 || sys5 || sys6

{0, 3, 1} → 2,
{0, 1, 3} → 2,
{1, 0, 3} → 2,
{1, 3, 0} → 2,
{3, 1, 0} → 2,
{3, 0, 1} → 2, : sys1, 6, 5 → sys4 || sys3 || sys2

{0, 2, 3} → 1,
{0, 3, 2} → 1,
{2, 3, 0} → 1,
{2, 0, 3} → 1,
{3, 0, 2} → 1,
{3, 2, 0} → 1 : sys3, 6, 4→ sys5 || sys2 || sys1

{1, 2, 3} → 0,
{1, 3, 2} → 0,
{2, 1, 3} → 0,
{2, 3, 1} → 0,
{3, 1, 2} → 0,
{3, 2, 1} → 0 : sys4, 5, 2→ sys6 || sys3 || sys1
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ruleDCKV reduction examples

ruleDCKV51111, 1121, 1213, 1223, 1231, 2111, 2121, 2131, 2211,

2223, 2234, 2311, 2321, 2331, 2344

Analysis

ruleDCKV5[{ ...}]

x/yz 000 001 002 010 020 101 100 102 201 200 202 203 300
0 0 0 0 2 1 0 0 0 0 0 0 0 0
1 3 E E E 1 E E E E E E E E
2 3 E E E 2 E E E E E E E E
3 2 E E E E E E E E E E E E

distribution density: [11,2,4,2]

0/11 1/2 2/4 3/2
0, 0, 0, 0
0, 0, 0, 1
0, 1, 0, 0
0, 1, 0, 1
0, 2, 0, 2
0, 2, 0, 0
0, 0, 0, 2
0, 3, 0, 0
0, 1, 0, 2
0, 2, 0, 1
0, 2, 0, 3

0, 0, 2, 0
1, 0, 2, 0

2, 0, 2, 0
0, 0, 1, 0
0, 0, 1, 0
3, 0, 0, 0

1, 0, 0, 0
2, 0, 0, 0

DitrDense (ruleDCKV5[{1111, 1121, 1213, 1223, 1231, 2111, 2121, 2131, 2211,
2223, 2234, 2311, 2321, 2331, 2344}]) = (11, 2, 4, 2)

Analysis of the interaction patterns

{0, 0, 0, 0} → 0, Sys1
{0, 0, 0, 1} → 0,
{0, 1, 0, 0} → 0,
{0, 1, 0, 1} → 0,

{0, 2, 0, 2} → 0, Sys2
{0, 2, 0, 0} → 0,
{0, 0, 0, 2} → 0,
{2, 0, 2, 0} → 2,

{0, 3, 0, 0} → 0 : Sys3

: intra

{0, 0, 1, 0} → 2, : sys1 → sys2 || sys3
{0, 0, 2, 0} → 1 : sys3 → sys1 || sys2

: inter
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{1, 0, 0, 0} → 3, : sys1 → sys5 || sys6
{2, 0, 0, 0} → 3, : sys3 → sys4 || sys6
{3, 0, 0, 0} → 2 : sys6 → sys4 || sys3

: trans

{0, 1, 0, 2} → 0,
{0, 2, 0, 1} → 0,
{1, 0, 2, 0} → 1,
{2, 0, 1, 0} → 2,

{0, 2, 0, 3} → 0,
{2, 0, 3, 0} → 2

: mediation

Further example: non-reducible

ruleDCKV5[{1111, 1121, 1213, 1223, 1232,
2111, 2121, 2133, 2211, 2223, 2230, 2311, 2323, 2332, 2300}]

{1, 1, 1, 1} → 1, {2, 2, 2, 2} → 2, {3, 3, 3, 3} → 3,

Not reduced

Random
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Layers of morphoCA sub-systems of ruleDM[{1,11,3,4,15}]
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All together
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Step - wise developments of ruleDM[{1,11,3,4,15}]

k 1 6

l 2 7 11

m 3 8 12

n 4 9 13

o 5 10 14 15

cell

initial

22 : red
66 : blue 68 : red

110 : red 112 : green 114 : red
154 : blue 156 : blue 158 : blue 160 : red

198 : red 200 : blue 202 : blue 204 : green 206 : red

Transition graphs of reduced ruleDM[{1,11,3,4,15}]

Additionally to the difference of reduced and non-reduced morphoCA rule in respect to their seed structure, there is 
also an interesting difference between ArrayPlot visualizations and transition graph representations by the Graph-
Plot of reduced morphoCA rules to observe. All reductions are conserving the full visualization of the original, while 
the transition structure is significantly reduced.

ruleDM[{1, 11, 3, 4, 15}]

Reduction steps
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¨

Full pattern

Without {1, 1, 1} -> 1, {2, 2, 2} -> 2, {3, 3, 3} -> 3,

Without :
{0, 0, 3} → 2,

{1, 1, 0} → 2, {1, 1, 2} → 0, {1, 1, 3} → 2, {2, 2, 3} → 0,
{2, 2, 0} → 1, {2, 2, 1} → 0, {3, 3, 2} → 1, {3, 3, 0} → 2, {3, 3, 1} → 0,

{3, 2, 0} → 1, {3, 1, 2} → 0, {1, 2, 3} → 0

Fully reduced
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